MEETING MINUTES

Minutes:	Santos Community Committee - Narrabri Shire Wednesday, 11 June 2014 Narrabri Golf Club, Narrabri
Attendance:	David Ross (Chair), Tahnee Laycock (Secretary), Tony Pickard, Ian Duffy, Terry Hynch, Annie Moody (Santos), Doug Main (Santos), Vesna Rendulic (Santos), Ron Campey, Victoria Hamilton, John Tough.
Apologies:	Jon Maree Baker, Brendan Warnock, Ken Flower.

	Discussion	Action/By Whom
1. Welcome, apologies and introductions	The chair opened the meeting at 5:38pm. Chair welcomed committee. Introduced Santos Representative: Doug Main. Chair informed the committee that Michael Guest has resigned from the CCC committee. Chair thanked him for his time, effort and contribution to the CCC.	
2. Previous meeting minutes	– Action for Santos to provide committee with full soil analysis including analysis of bacteria of the Leewood site next year when it is available, as well as providing regular soil checks to ensure no contamination is occurring is now completed. The 12 pages that were missing were the soil tests from Wilga Park which is why they weren't included.	
	<i>Comment:</i> Committee member won't enter Santos shop as they have been informed it is classed as a consultation.	

MEETING MINUTES

Discussion	Action/By Whom
– Action for Santos to explore the option of formalising the committee. The Office of Coal Seam Gas and other government departments including the Division of Resources and Energy and The Land and Water Commission are framing a potential terms of reference and framework for a formal consultative committee group in Narrabri. They have been talking with the council but they cannot give any formal outcome information of the discussions at this stage. They have advised Santos that they will have more information to them by the end of June. Once the framework has been set up, the formalising of the committee will happen quite quickly.	
Santos is happy to continue on with the informal committee in the interim and believe it serves a purpose.	
Q. Committee member: Do committee members get any input in how the CCC will be run? A. Santos: No and Santos won't either. It will be the Minister that signs off on it.	
 In regards to setting up a proxy for Jon Maree Baker, Santos is happy for committee members to have proxies. So, Santos is very happy for somebody from Namoi Water to replace Jon Maree Baker. 	
– Santos to provide further details on the erosion management plan for the flow line project. This has been partially completed. Committee member requested that a further explanation be provided in general terms how Santos is ensuring, in the forest and other areas, that erosion doesn't happen down the disturbed earth corridor where Santos put in the gas lines including slopes, creeks and gullies.	Santos to provide further details on the erosion management plan for the flow line project including slopes, creeks and gullies.
 Santos to respond to questions raised regarding recent aquifer contamination and associated questions within 10 days. Responses have been completed, however, Santos is 	

MEETING MINUTES

Discussion	Action/By Whom
waiting on them to be signed off on, and at this stage they will be distributed through the chair.	
 Santos to respond to questions raised in Appendix 1 and 2 regarding the Produced Water Management Plan Document and & also Tintsfield Water Management Plan. Ongoing. 	
 Santos to respond to whether they can provide a copy of the Bibblewindi Hydrological Assessment. Ongoing. 	
 Action on Chairman to work out correct figure of Tourism expenditure and rectify with Santos and Social Impact Assessment firm GHD. Completed. 	
– Santos to provide the most recent data on water quality concentrations across Narrabri Gas Development. All current water information is on the water portal. Santos will provide a copy of the information and presentation and email it to the chair to distribute.	Santos will email to the chair to distribute a copy of the water information and the presentation.
<i>Comment:</i> A lot of the original answers from what was said in May's meeting were completely changed in the minutes. Thus, not a true reflection of the meeting. Member voiced a complaint.	Chair and Secretary to look over previous meeting and respond accordingly.
<i>Comment:</i> The minutes were reviewed and changes were submitted and accepted by the chair.	
Chair requested that comments on the minutes need to be made within 5 days of receiving the draft. No leeway will be provided in the future for any committee member.	

MEETING MINUTES

		Discussion	Action/By Whom
3.	Update in rehabilitation activities - Presented by Doug Main (Santos)	Doug Main introduced himself as a project manager in the operations team. Doug looks after a range of projects, including most recently the new Leewood ponds.	
		Legacy Rehabilitation Project – Progress Update	
		Background	
		When Santos bought ESG, we found some environmental issues that did not uphold the	
		Santos values:	
		• "Cares – by taking the long-term view to build a sustainable future for our company, our	
		people and the environments and communities in which we operate"	
		• We will lighten the footprint of our activities"	
		Legacy Issues	
		Bibblewindi Dieback (2011 spill) – Santos discovered an earlier spill that had been	
		unreported and voluntarily disclosed it to the regulator.	
		Site over clearing – Initial indications suggested that some sites had been cleared in excess	
		of approvals.	
		Opportunities for improvement	
		Unwanted ponds – Numerous ponds exists that are surplus to requirements, or do not meet	
		Santos standards.	
		Well site partial and full rehab – Some well sites need tidying up and reduction of cleared	
		area. Some sites can be returned to land holders.	
		Supplemental Rehab – Ongoing monitoring of previously rehabilitated areas identified the	
		need for supplemental work.	
		Progress Summary	

MEETING MINUTES

Discussion	Action/By Whom
Issues originally identified: Bibblewindi dieback (2011 spill) – 95% completed – All civil works completed in March 2013. Irrigation of soil has been completed and assisted revegetation is in progress. Site over clearing – 100% completed – All identified over-clearing reduction has been completed.	
 Additional items identified: Unwanted ponds – 100% completed – All nominated excess ponds have been decommissioned and sites have commenced natural revegetation. Pond 3 is currently being emptied, Pond 2 remains and Pond 1 has been removed and area rehabilitated. Well site partial and full rehabilitation – 100% completed – Rehab of all legacy sites completed. Bohena dieback soil treatment – 95% completed – All civil works completed in March 2013. Irrigation of soil has been completed and assisted revegetation is in progress. Supplemental rehabilitation – 100% completed – All works completed and natural revegetation is in progress. 	
Completed: Bohena 6 Pond rehabilitation – 100% completed – All work complete. Bohena 2, 2D, 4, 4l well rehabilitation – 100% completed – All work complete. Private landholder's yard rehabilitation – 100% completed – All work complete. Scope has grown over time, but some quick wins have been achieved and significant progress made on planning and procurement. All civil works have been completed.	

MEETING MINUTES

Discussion	Action/By Whom
In the last eighteen months:	
More than 40 hectares of land has undergone some kind of rehabilitation	
• Emptying, backfill and soil treatment of five ponds, ten sumps and nine flare pits (24 in	
total) has been completed	
• 42 individual sites/leases have undergone/commenced some form of rehabilitation (eight	
x full rehabilitation, 28 partial, six x dieback)	
Approximately 3,000 tonnes of solid waste disposed of to licenced landfill	
Rehabilitation close-out approach has been agreed with DRE and FCNSW. Close-out will	
occur when revegetation has become self-sustaining.	
Rehabilitation Process	
✓ It takes considerable time and has various stages.	
✓ Detailed studies of the existing site and historical practices	
 Development of rehabilitation plans and analytical testing 	
✓ Regulatory review of the scope of work for each site	
✓ Procurement of contractors	
✓ Execution of work	
 Validation of work conducted 	
✓ Close-out	
Bohena 3	
See Appendix 1	
Rehabilitation began at Bohena 3 in October 2012.	
Civil work completed 23 November 2012.	

MEETING MINUTES

Discussion	Action/By Whom
Bohena 6	
See Appendix 2	
Initial rehabilitation was conducted at Bohena 6 in Q2 2012.	
Civil work completed in January 2013.	
Bohena South	
See Appendix 3	
Dewhurst 8 Pond	
See Appendix 4	
The Dewhurst ponds and sumps were located on private land and have been	
decommissioned according to landholder requests.	
Civil works completed on 1 February 2013.	
Lease Site Rehabilitation – Bohena 5	
See Appendix 5	
Well head decommissioning was completed in August 2012.	
Site rehabilitation works completed in December 2012.	
Lease Site Partial Rehabilitation Dewhurst 13	
See Appendix 6	
Work commenced 7 November 2012.	
Work completed 1 February 2013.	
Lease Site Partial Rehabilitation Dewhurst 16	
See Appendix 7	
Work commenced 28 November 2012.	

MEETING MINUTES

Discussion	Action/By Whom
Work completed 13 March 2013.	
Lease Site Partial Rehabilitation Bibblewindi 13 See Appendix 8 Rehabilitation activities began at Bibblewindi 13 on 8 October 2012. Work concluded on 8 November 2012.	
Dieback Area Remediation #1 See Appendix 9	
Dieback Area Remediation #2 See Appendix 10	
 Dieback Area Remediation Using the results of extensive trials and testing, dieback areas are treated as follows: Removal of dead vegetation (safety concerns) – used later for soil stabilisation and to create habitat Removal of heavily impacted soil Earthworks to improve drainage and site contours In-situ chemical treatment of impacted and affected soils (gypsum and sulphur) Respread retained topsoil Addition of organics to soil Respread retained timber Irrigation of soil to assist chemical processes Assisted revegetation Ongoing monitoring 	

MEETING MINUTES

Discussion	Action/By Whom
Future Plans	
Ongoing monitoring of revegetation	
Partial rehabilitation of new sites	
Transfer of stored water out of the Pilliga	
Continuous improvement – upgrade of sediment and erosion control measures	
on all remaining sites	
Q. Committee member: Why did Santos not re-seed in Bohena 3?	
A. Santos: There was a lot of consultation with forestry and they insisted it be natural and	
not assisted vegetation. We only did assisted vegetation in dieback areas. Everywhere else	
is natural vegetation.	
Q. Committee member: What about the pad sides?	
A. Santos: No, because they were a supplementary rehab.	
Q. Committee member: At Bohena 2 Bore, the dieback is about a kilometre long. Why is that?	
A. Committee member: First Source Energy 1999 had an unlined dam at the site that burst in	
a thunderstorm. It was a complete spill however it didn't go all the way through from the	
burst itself; rain has assisted its spread. Eastern Star Gas in 2004 started its rehabilitation	
and treated the back end with gypsum but nothing is growing.	
Q. Committee member: What would cause it to not grow back for 15 years?	
A. Santos: Salt. The only way to treat it is to remove it.	
Q. Committee member: At Bohena 6, the dam on the right hand side there is an earth dam. How did the revegetation go there?	

MEETING MINUTES

Discussion	Action/By Whom
A. Santos: At Bohena 6 we did an early rehab. The ponds at Bohena 6 were filled in before my time so I never actually got to see them.	
Q. Committee member: Is the revegetation only growing on the mulch or into the earth that is there?	
A. Santos: It's going through. Depending on the site we have a couple of different methodologies for mulch. Some of them we mix in lime and gypsum and other sites we spread varying amounts of mulch and use deep grit. Revegetation is not only on the top 50 mL but 300 mL deep.	
Q. Committee member: Who grows the seeds?	
A. Santos: Yes we have contractors and our civil works contractors have got sub-contractors.	Santos to respond to whether the pipelines are
Q. Committee member: Do you compact the pipelines?	compacted.
A. Santos: I'll have to take that question on notice.	
Comment:	
I have noticed out there in the last couple of weeks you have hand planted a lot of little seedlings. Some areas they have come through quite well with around 80% levying but other areas extremely poor less than 10% levy.	
<i>Comment:</i> That is part of the assisted revegetation program. They were grown from seedlings that were collected in the spring.	
Q. Committee member: You were talking earlier on about irrigation to flush the salts. Where do the salts go?	Santos to respond to why

MEETING MINUTES

Discussion	Action/By Whom
A. Santos: Part of the agreed rehabilitation plan was that they would get diluted and flushed with storm water.	the irrigation method to flush the salts was used and approved.
 Q. Committee member: Why was that particular method used and approved? A. Santos: That is a question for our scientists. I will take this on notice. Q. Committee member: Bibblewindi had a leak from the dam. There was uranium collected 	Santos to provide a copy of the natural and unnatural
together in a large area with an amount over and above what is permissible for drinking water. The collection was caused by bicarbonates. This produced water that spilt out there at these spill sites is full of bicarbonates. So have you done a check out there for the uranium level by natural and unnatural? A. Santos: Taken on notice.	uranium levels from the produced water spill at Bohena.
<i>Comment:</i> Please take on notice and find out why and what soils two people out on Moore's Rd were testing last Wednesday at 9am.	Santos to provide why and what soils two people out on Moore's Rd were testing.
Q. Committee member: With the 3,000 tonnes of solid waste, what was in that? A. Santos: It's classified as general soil waste. Sludge sediment including dust, dirt, sand.	
Q. Committee member: It had to be taken to Newcastle. Why? A. Santos: The local landfill had insufficient capacity to cope with it.	
Q. Committee member: How did you transport it? Was it liquid or solid? A. Santos: It was a challenge for us. We had to convert it to a solid. So we pumped out the water that we could using suck trucks. Then we mixed in this super absorbent polymer. Similar to what is used in nappies that absorbs moisture. As soon as it got to a spadable	

MEETING MINUTES

Discussion	Action/By Whom
state we used excavators to transfer it to lined trucks and down the road it went. Q. Committee member: Can the committee get an analysis of that? A. Santos: Taken on notice.	Santos to provide an analysis of how the 3,000 tonnes of solid waste was transported to Newcastle.
 Q. Committee member: You have had lots of fines. Have any of the fines been because rehabilitation related? A. Santos: There was a \$1500 penalty infringement notice from the Bibblewindi ponds leak. There was also a fine that was handed down from the spill that we inherited from Eastern Star Gas. When you acquire a company you take over their assets and liabilities. Q. Committee member: We were told that the soil that was removed from Bibblewindi treatment facility was contaminated. That soil is now being used as the bund around the 5 mg tank. Can we have a soil analysis of that as near where that is, is where you found the uranium? So did the leak come from the pond or the soil that was removed from the spill site? A. Santos: We cannot take a sample of the bund as that bund is lined. I'll take that on notice. <i>Comment:</i> While we are on the subject of ponds and soil I would like to hand out a copy of the Tintsfield Pond EPA factsheet that states it was reported by Santos over 12 months ago. Q. Committee member: Are there aquifers under Leewood? A. Santos: Yes. They are under every bit of soil in this area. Q. Committee member: How many wells do you have down now and how many more are 	Santos to determine whether it is feasible to provide a soil analysis of the soil that was contaminated at the Bibblewindi treatment facility.
you going to put down?	

MEETING MINUTES

	Discussion	Action/By Whom
4. General Business Feedback on chairing	 A. Santos: At the moment we have maybe 40 active wells. Active meaning they could produce if we had a pump down there. Under our exploration and appraisal licence we have approval for 15 of which we have done 7 with 5 to go or 5 with 7 to go. In the broader Narrabri Project we intend to drill up to 850 wells. Committee to email the Chair any improvements they wish to express. Overall consensus, committee was happy with how the meetings are being run. 	

Next Meeting Topics:	Santos Website
Date of next meeting:	23 rd July 2014
Meeting Closed:	7:17pm
Appendix 1: Bohena 3 Appendix 2: Bohena 6 Appendix 3: Bohena South Appendix 4: Dewhurst 8 Pond Appendix 5: Lease Site Rehabilita Appendix 6: Lease Site Partial Re Appendix 7: Lease Site Partial Re Appendix 8: Lease Site Partial Re Appendix 9: Dieback Area Reme Appendix 10: Dieback Area Reme	ehabilitation Dewhurst 13 ehabilitation Dewhurst 16 ehabilitation Bibblewindi 13 diation #1

MEETING MINUTES

11 June, 2014

Attachment 1: Actions

Action Raised	Date Raised	Progress Made
Action for Santos to explore the option of formalising the committee.	18 th June 2013	Ongoing waiting on response from Government
Santos to respond to questions raised regarding recent aquifer contamination and associated questions within 10 days.	12 th April 2014	Ongoing
Santos to respond to question raised regarding CCC chance to comment on the transportation of water from the exploration phase to production phase.	14 th May 2014	
Santos to respond to questions raised in Appendix 1 and 2 regarding the Produced Water Management Plan Document and & also Tintsfield Water Management Plan.	14 th May 2014	Ongoing
Santos to respond to whether they can provide a copy of the Bibblewindi Hydrological Assessment.	14 th May 2014	Ongoing
Santos to provide the most recent data on water quality concentrations across Narrabri Gas Development.	14 th May 2014	Ongoing
Santos to provide explanation as to how they are going to ensure, in the forest and other areas, that erosion doesn't happen down the disturbed earth corridor, where the gas lines are put including slopes, creeks and gullies.	11 th June 2014	
In relation to the tampering of minutes the Chair and Secretary will look over previous meeting and respond accordingly.	11 th June 2014	
Santos to respond to whether the pipelines are compacted.	11 th June 2014	
Santos to respond to why the irrigation method to flush the salts was used and approved.	11 th June 2014	
Santos to provide a copy of the natural and unnatural uranium levels from the produced water spill at Bohena.	11 th June 2014	

MEETING MINUTES

Santos to provide why and what soils two people out on Moore's Rd were testing.	11 th June 2014	
Santos to provide an analysis of how the 3,000 tonnes of solid waste was transported to Newcastle.	11 th June 2014	
Santos to determine whether it is feasible to provide a soil analysis of the soil that was contaminated at the Bibblewindi treatment facility.	11 th June 2014	

Santos Activities Update – June 2014

SANTOS UPDATE – June 2014

Proposed upcoming work program – Narrabri Area

Time frames are indicative as schedules are dependent on factors such as approval times, weather and rig availability.

Decommissioning of wells:

• There are no plug and abandon activities planned for June

Workovers:

- The workover program is continuing with work being undertaken at the Bibblewindi East and Bibblewindi West pilot wells during June
- The workover rig is used to install and/or maintain pumps on existing wells

Drilling of exploration core holes:

 There are no core hole activities planned for June

Pilot wells:

- Drilling has been completed on the Dewhurst 26 – 29 well sets
- The drill rig has been released until pilot drilling resumes, pending approvals, later this year
- Tintsfield pilot is on-line with the Bibblewindi East and West pilot off-line for workover program

Leewood:

- The transfer of water from the pond at Bibblewindi to Leewood will be ongoing throughout June
- Installation of the liner of the second and third pond cells at Leewood is continuing
- Completion of the remaining pond cell is expected later in the year
- The Review of Environmental Factors (REF) for Leewood Phase 2 is being prepared
- The proposed activity involves the construction of treatment facilities for produced water and brine at Leewood

 Community consultation activities for Leewood Phase 2 will be undertaken when the scope of the project is finalised

Other work:

> • Wilga Park Power Station has been recommissioned but is presently off-line as there is no gas flowing from the Bibblewindi West pilot as work being undertaken as part of the workover program

Site visits:

 The next scheduled community site visit will take place on Thursday 19 June. If you are interested in attending or would like more information, please call Vesna Rendulic on 6792 9033 or email <u>EnergyNSW@santos.com</u>

Community:

- On Friday May 23, Santos held a site tour for a number of journalists from local, state and national media outlets
- On Tuesday June 3 Santos will make a presentation on the Narrabri Gas Project to the Narrabri Shire Council
- The next meeting of the Santos Community Committee on CSG for the Narrabri Shire will be held on Wednesday 11 June

Other:

- This year is the 60th Anniversary of Santos and in recognition of this major milestone a book on the history of the company, *Blue Flames, Black Gold* was launched recently by Santos CEO David Knox in Adelaide.
- The Planning Assessment Commission is holding public hearings in Narrabri on June 19 as part of the assessment process for Santos' Bibblewindi and Dewhurst Gas Exploration Pilot Expansion. The hearings provide a chance for public comment on the assessment. All speakers must register by June 13. For more information visit www.pac.nsw.gov.au

Questions to June 2014 Narrabri Santos CCC

These questions stem from the Santos Statement on the Tints field Ponds dated 5th June 2014 and in view of the findings released by the EPA on the Prime News on 10th June 2014

Q: If the leak was detected around the same time as the Bibblewindi leak, why is it not mentioned in the EPA Investigation Report?

Q: What was the naturally occurring level of Salinity in both the soils and water at the effected site and what are the elevated level?

Q: What are the heavy metals as mentioned and what were the naturally occurring levels and the elevated levels in both the effected soils and water?

Q: Has Santos done a full Bacterial analysis been done on the effected water and moist soils? If so will Santos supply the members of the present Committee with these results?

Q: Where is the monitoring bore located and at what depth were these elevated levels of naturally occurring salts and heavy metals?

Q: If no water was put into Tintsfield Pond 2 since mid-2012, then where was the water from the Tintsfield Pilot going? Which Tintsfield Pond was used to hold the transferred water from the Bibblewindi No.3 Pond? How much water was transferred to the Tintsfield Ponds from Bibblewindi, when the transfer had finished what was the remaining safe capacity of the Tintsfield Dams, percentage wise?

Q: We now have a copy of the soil analysis at Wilga Park. These sample points do not mention Uranium and other Heavy metals, would it be possible to obtain a full soil and water analysis of the area around the located leak both before and after the leak was detected?

Q; Would it also be possible to obtain a copy of the EPA Investigation Report, as well as any Santos Reports and studies in relation to the leak? The CCC is still waiting the report on the Bibblewindi leak from CH2MHILL titled "Hydrological Definition Study"; I suppose that Santos has asked CH2MHILL to do one on the Tintsfield leak?

Q: How does Santos know that the leak was about 2 litres per day? Does Santos know how long the leak was occurring?

Q: Does Santos know what caused the liner to fail, and if so what was the cause?

Q: Is Santos or any part of their operation in PEL 238 under continuing Investigations by either the EPA or the OCSG?

Q: When Santos decommissioned the previous operators drill and other ponds located on the well pads and other locations in PEL 238, were any liners or ponds leaking into the surrounding area. If there were leaks, can Santos inform the present Committee where the leaks occurred and what are the elevated levels of "naturally occurring" heavy metals and Salts? Will Santos have these made available to the members of the present Committee?

Q: In NSW, has Santos now or in the past engaged any outside security firm that could have joined the ranks of the so called "activists"? If so, was any information passed on to Santos or others about people or activities? Could these activities have been influenced by these outside people?

Tony Pickard

Meeting Action Item Response

Reference:	140509_NCCC
Subject:	Meeting Action Items – May 2014 Meeting Narrabri CCC
Requested	David Ross
by:	Chair Narrabri CCC
Response:	 Item 3 - Further to the distribution of the Leewood Soil Analysis report to the CCC, a member has asked if the results for Leewood include analysis for uranium? Santos undertook uranium analysis of soil at Leewood and Bibblewindi as part of baseline monitoring activities. A copy of the results is provided below.
Briefing	Glenn Toogood
Officer:	Team Leader, Water
Date:	11 June 2014

HEAVY METAL CONCENTRATIONS IN SOIL CORES

Location	Depth (mbGL)	Barium (mg/kg)	Strontium (mg/kg)	Uranium (mg/kg)
Bibblewindi	7	<10	2	0.3
Bibblewindi	11	<10	<2	0.5
Bibblewindi	16	<10	<2	0.7
Bibblewindi	28	20	<2	0.6
Leewood (Background)	8	60	<2	0.2
Leewood (Background)	10	10	<2	0.5
Leewood (Background)	15	20	<2	0.5
Leewood (Background)	33	70	6	0.3

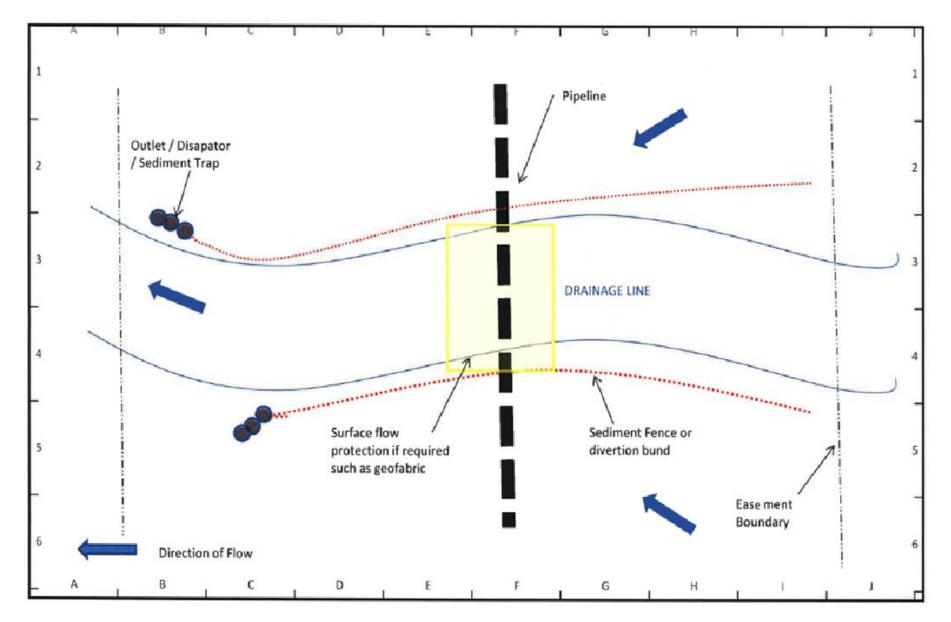
Narrabri CCC

Meeting Action Item Response

Reference:	140611_NCCC
Subject:	Meeting Action Items – June 2014 Meeting
···· j ····	Narrabri CCC
Requested	David Ross
by:	Chair
- /	Narrabri CCC
Response:	Item 1 - Santos to provide explanation as to how they are going to ensure, in the forest and other areas, that erosion doesn't happen down the disturbed earth corridor, where the gas lines are put including slopes, creeks and gullies.
	 Information on erosion and sediment control was provided to the Committee prior to the June 2014 meeting as Item 2 in the Minute Action Item Response.
	• Further information on standards that Santos applies to construction activities in relation to erosion and sediment control can be sourced through the 'Blue Book'.
	 'Blue Book' reference: Landcom. March 2004. Managing Urban Stormwater: Soils and Construction (4th Edition). NSW Government. Available from: http://www.environment.nsw.gov.au/stormwater/publications.htm
	 This document is large (555 pages in length, 22MB) and is too large to email.
	Item 2 – Santos to provide a copy of the natural and unnatural uranium levels from the produced water spill at Bohena.
	 The Bohena pond has been decommissioned and the site rehabilitated. As Uranium was not a potential contaminant of concern, soil tests for this element were not undertaken. Uranium is a naturally occurring trace element in the soil across the Project Area, as is evidenced by a number of soil sampling activities that have been undertaken. (Results of a number of these tests have been previously provided to the Committee). Uranium is not an unnaturally occurring trace element and there are a number of reports from Government agencies which have detailed the extent of Uranium within the soil weathering profile.

	 Item 3 – Santos to provide why and what soils two people out on Moore's Road were testing. There is no road within the Narrabri Shire Council area with the name Moore's Road that we have been able to locate. Please refer to map of Narrabri Shire roads available at http://www.narrabri.nsw.gov.au/files/uploaded/file/RoadsA1.pdf Santos was undertaking a number of soil sampling activities (with appropriate landholder approval) during May and June 2014. Soil sampling is one of a suite of baseline studies being undertaken for the preparation of an Environmental Impact Statement (EIS) for the Narrabri Gas Project. On lodgement of the EIS, the information gathered from these surveys will be provided to the NSW State Government and will be entered to the Soils and Land Information System (SALIS) database.
Briefing	Annie Moody
Officer:	Team Leader, Community and Land
Date:	7 August 2014

Narrabri CCC


Meeting Action Item Response

Reference:	140509 NCCC		
nererence.	110505_11000		
Subject:	Meeting Action Items – May 2014 Meeting		
	Narrabri CCC		
Requested	David Ross		
by:	Chair		
	Narrabri CCC		
Response:	Item 1 - Santos to provide full soil analysis of Leewood		
	 Pages 1 to 13 of the report were provided to the Committee at the May 2014 meeting Pages 14 to 21 of the report had been omitted as they were unrelated to the Leewood property. Those samples related to soil analysis of the Wilga Park Power Station property owned by Santos. The full soil analysis report for both properties is provided at <u>Attachment One</u> 		
	 Item 2- Santos to provide further details on the erosion management plan for the flow line project in response to committee member asking how Santos will stop and manage erosion on the banks of creeks that the flow line passes through after construction? Construction activities are undertaken so as to minimise the amount of disturbed area, reduce length and steepness of slopes, implement erosion control measures and stabilise disturbed areas as soon as possible. Erosion control is a proactive strategy that minimises the degree of sedimentation from the site. A 10 metre wide corridor was cleared to accommodate the pipeline and the vegetation within the corridor was mulched. After installation of the pipe, the mulch and topsoil was spread to encourage revegetation which will cover and bind the soil. The bulk of pipe installation was undertaken using the ploughing method which reduces the amount of disturbance generated by these works. This method also allows the ground to close in naturally after the installation of the pipe. When crossing a drainage line, elements of construction include 		
	 Separation of clean water flow from site activities; 		

	 Diversion of site runoff away from the main creek to sediment controls and stable, well vegetated areas; Isolation of the construction site from the adjacent waterway; Use of erosion and sediment controls (rock socks, sediment fence); Installation of stable vehicular crossings if required. A plan of a standard drainage crossing is included at <u>Attachment Two</u>. 	
Briefing	Annie Moody	
Officer:	Team Leader, Community and Land	
Date:	5 June 2014	

Attachment Two

82 Plain Street Tanworth NSW 2340 Ph 02 6762 1733 Pk 02 6765 9109 adminifesem/rioaq con: au www.even/rioaq.com.au

ANALYSIS REPORT SOIL

Project No:	EW120674	Date of Issue:	19/12/2012
Customer.		Report No:	I
Address:		Date Received.	12/10/2012
		Matrix:	SOIL
Phone:		Location:	Leewood/Wilga Park
Fax.		Sampler ID:	Client Supplied
omail:		Date of Sampling:	12/10/2012
		Sample Condition:	acceptable

Comments:

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

Stylinis Vanio

Signed: Stephanie Cameron Laboratory Manager

NATA Accredited Laboratory 15708

This document is issued in accordance with NATA's accorditation requirements.

Accredited for compliance with ISO/IEC 17025

This endysis relates to the sample solutified and it is the client's responsibility to make contain the sample is representative of the matrix to be tested. Samples will be discarded one month alter the date of this report. Please advise if you wish to have your sample's reformed.

Leewood

Pit Point	X	Y
L1	149.619611	-30.492679
L2 -	149.620305	-30.495764
L3	149.618323	-30.499676
L4	149.618587	-30.503364
L5	149.623045	-30.494047
L6	149.624427	-30.497722
L7	149.621901	-30.499799
L8	149.622375	-30.504347
L9	149.627284	-30.496134
L10	149.624872	-30.501775
L11	149.626358	-30.505810
L12	149.628633	-30.499140
L13	149.631326	-30.497950
L14	149.630354	-30.502125
L15	149.629871	-30.504405

Project No: EW120674

Location: Leewood

		5	Sample ID	1	.2	L	.2	L	4	1	_4
Test Densus tes	Method	Method	Depth	0-1	5cm	15-3	30cm	0-1	ōcm	15-3	30cm
Test Parameter	Description	Reference	Units	1200	674-1	1200	674-2	1206	74-3	120	674-4
Chlorides	Probe	R&L 5A1	mg/kg	36	6.8	1	70	24	.5	1	75
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.	07	0.	.24	0.	04	0	.21
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	5.	34	5.	.54	5.	02	5	.14
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	3.	96	3.	.63	2.	37	3	.13
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	12	2.8	19	9.2	14	.7	1	1.8
Phosphorus Buffer Index	PBI _(Col)	R&L 912a	mg/kg	8	1.9	70	6.8	80).3	7	0.1
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	1(0.4	19	9.5	2.	17	1:	2.4
Organic Carbon	LECO	R&L 6B2	%	0.	80	0.	.57	0.	78	0	.41
Copper Ex	DTPA	R&L 12A1	mg/kg	0.	57	0.	.63	0.	45	0	.40
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.	28	0.	.21	0.	39	0	.23
Manganese Ex	DTPA	R&L 12A1	mg/kg	29	9.3	1.	.64	18	8.8	1	.51
Iron Ex	DTPA	R&L 12A1	mg/kg	1	22	74	4.2	23	32	9	6.7
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.	44	0.	.38	0.	44	0	.50
Sol Calcium	SAR	In House	mg/kg	1	5.5	1	1.0	6.	76	1	6.8
Sol Magnesium	SAR	In House	mg/kg	49	9.1	3	3.9	14	1.8	1	60
Sol Sodium	SAR	In House	mg/kg	88	8.2	2	60	45	5.8	3	14
SAR	calculation		meq/100g	3.	.76	1	1.1	1.	95	1	3.4
Potassium Ex	Colwell	R&L 9B1	mg/kg	1	47	9	3.4	20	09	1	24
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.	.38	0	.24	0.	54	0	.32
				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100ç	mg∕kg	meq/100g
Potassium Ex	NH₄CI	R&L 15A1		109	0.28	78	0.20	197	0.51	124	0.32
Calcium Ex	NH₄CI	R&L 15A1	-	421	2.11	320	1.60	243	1.22	145	0.73
Magnesium Ex	NH₄CI	R&L 15A1	54	638	5.32	1026	8.55	527	4.39	984	8.20
Codium Fu	MILL CI	DOL 4544		OFA	1 10	670	2 40	107	0 47	404	0 15

Sodium Ex	NH₄CI	R&L 15A1	1		1.10	572	2.49	107	0.47	494	2.15
Ex Potassium %	Calc	Calc	%	3.17	τ.		55	7.0			79
Ex Calcium %	Calc	Calc	%	23.9			2.5	18			36
Ex Magnesium %	Calc	Calc	%	60.4	4	66	6.6	66		5.510-	2.0
Ex Sodium %	Calc	Calc	%	12.5	5	19	9.4	7.0	07	18	3.9
ECEC	Calc	Calc	meq/100g	8.8	1	12	2.8	6.	58	1'	1.4
Ca/Mg Ratio	Calc	Calc	meq/100g	0.40	0	0.	19	0.2	28	0.	09

Report Date: 19/12/2012

ø

Project No: EW120674

Location: Leewood

		Sa	ample ID	L2	L2	L4	L4
Test Parameter	Method Description	Method Reference	Depth Units	0-15cm 120674-1	15-30cm 120674-2	0-15cm 120674-3	15-30cm 120674-4
Particle Size Analysis	s (Hydrometer)						
Clay	Hydrometer	ASTM D422-63	%	29.5	28.9	27.3	29.3
Silt	Hydrometer	ASTM D422-63	%	1.4	1.0	1.8	2.2
Fine Sand	Hydrometer	ASTM D422-63	%	27.4	31.0	28.9	35.1
Coarse Sand	Hydrometer	ASTM D422-63	%	41.7	39.0	41.8	33.3
Gravel	Hydrometer	ASTM D422-63	%	0.1	0.1	0.2	0.1
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.004	0.003	0.002	0.0001
EAT	In water	In House	Class	1	1	3a	1
EAT	In SAR 6	In House	Class	6	6	6	6
Bulk Density	Clod/compaction	n ASTMF1815	g/cm ³	1.51	1.41	1.48	1.51
Total Porosity	BD and PD	ASTMF1815	% v/v	47.6	46.3	39.8	42.1
Capillary Porosity	Calc	ASTMF1815	% v/v	22.4	22.9	25.4	28.3
Air Filled Porosity	Calc	ASTMF1815	% v/v	25.1	23.4	14.4	13.8
Water Retention	30cm tension	ASTMF1815	% v/v	14.9	16.2	17.1	18.8
Moisture	oven dry	ASTMF1815	% v/v	4.50	7.32	3.81	10.8
Texture	McDonald et al	In House	Class			FSCL	FSCL

5

Project No: EW120674

Location: Leewood

		3	ample ID	L4	L4	L4	L4
Test Parameter	Method Description	Method Reference	Depth	30-50cm	50-70cm	70-90cm	90-110cm 120674-8
	Description		Units	120674-5	120674-6	120674-7	
Chlorides	Probe	R&L 5A1	mg/kg	275	700	800	700
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.29	0.63	0.72	0.60
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	5.19	5.31	5.41	5.49
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	2.99	3.81	3.22	3.63
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	12.7	11.9	21.2	11.8
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	68.4	72.6	78.8	72.6
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	20.9	74.2	86.0	56.5
Organic Carbon	LECO	R&L 6B2	%	0.39	0.31	0.23	0.25
Copper Ex	DTPA	R&L 12A1	mg/kg	0.35	0.47	0.59	0.62
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.20	0.16	0.30	0.31
Manganese Ex	DTPA	R&L 12A1	mg/kg	2.86	1.53	<0.25	1.81
Iron Ex	DTPA	R&L 12A1	mg/kg	67.7	33.6	36.4	32.6
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.48	0.37	0.40	0.27
Sol Calcium	SAR	In House	mg/kg	14.3	10.7	5.87	11.3
Sol Magnesium	SAR	In House	mg/kg	158	206	114	208
Sol Sodium	SAR	In House	mg/kg	404	795	753	744
SAR	calculation	•	meq/100g	17.2	33.9	32.1	31.7
Potassium Ex	Colwell	R&L 9B1	mg/kg	150	102	146	166
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.38	0.26	0.37	0.43
				mg/kg meq/100g	mg/kg meq/100g	mg/kg neq/100	ç mg∕kg meq∕10

				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100g	mg/kg	meq/100g
Potassium Ex	NH ₄ Cl	R&L 15A1		118	0.30	107	0.27	144	0.37	144	0.37
Calcium Ex	NH₄CI	R&L 15A1		125	0.63	89	0.45	75.7	0.38	73.8	0.37
Magnesium Ex	NH ₄ CI	R&L 15A1		1057	8.81	1592	13.3	1702	14.2	1771	14.8
Sodium Ex	NH₄CI	R&L 15A1	-	643	2.80	102	0.44	1319	5.73	1343	5.84
Ex Potassium %	Calc	Calc	%	2.	41	1.	.90	1.	79	1.	.73
Ex Calcium %	Calc	Calc	%	4.	99	3.	.10	1.6	83	1.	.73
Ex Magnesium %	Calc	Calc	%	70	0.3	9	1.9	68	8.6	6	9.2
Ex Sodium %	Calc	Calc	%	2	2.3	3.	.07	27	'. 8	2	7.4
ECEC	Calc	Calc	meq/100g	1:	2.5	14	4.4	20).7	2	1.3
Ca/Mg Ratio	Calc	Calc	meq/100g	0.	.07	0.	.03	0.	03	0	.03

Senviroag

Project No: EW120674

Location: Leewood

		S	ample ID	L4	L4	L4	L4
Test Parameter	Method Description	Method Reference	Depth Units	30-50cm 120674-5	50-70cm 120674-6	70-90cm 120674-7	90-110cm 120674-8
Particle Size Analysis	(Hydrometer)						
Clay	Hydrometer	ASTM D422-63	%	29.2	31.2	28.8	33.4
Silt	Hydrometer	ASTM D422-63	%	2.7	2.6	4.4	5.5
Fine Sand	Hydrometer	ASTM D422-63	%	34.6	31.7	36.3	40.0
Coarse Sand	Hydrometer	ASTM D422-63	%	33.4	34.4	30.4	21.1
Gravel	Hydrometer	ASTM D422-63	%	0.1	0.1	0.1	0.0
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm∕hr	0.001	0.03	0.02	0.004
EAT	In water	In House	Class	1	2	2	2
EAT	In SAR 6	In House	Class	6	6	6	6
Bulk Density	Clod/compaction	ASTMF1815	g/cm ³	1.48	1.36	1.37	1.32
Total Porosity	BD and PD	ASTMF1815	% v/v	42.1	48.4	47.3	49.4
Capillary Porosity	Calc	ASTMF1815	% v/v	28.4	27.6	34.4	27.4
Air Filled Porosity	Calc	ASTMF1815	% v/v	13.7	20.9	12.9	22.0
Water Retention	30cm tension	ASTMF1815	% v/v	18.8	20.3	25.0	20.8
Moisture	oven dry	ASTMF1815	% v/v	11.3	13.1	13.6	15.3
Texture	McDonald et al	In House	Class	FSCL	CL	MC	MC

Project No: EW120674

Location: Leewood

	FILTER FLORE SOLO						
		5	Sample ID	L4	L6	L6	L10
T (B)	Method	Method	Depth	110-130cm	0-15cm	15-30cm	0-15cm
Test Parameter	Description	Reference	Units	120674-9	120674-10	120674-11	120674-12
Chlorides	Probe	R&L 5A1	mg/kg	650	17.0	115	10.5
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.56	0.03	0.19	0.02
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	5.51	4.45	6.30	4.45
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	4.34	3.75	3.55	2.78
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	11.2	14.5	12.2	15.8
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	75.8	82.7	70.5	83.0
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	50.8	2.68	10.4	2.73
Organic Carbon	LECO	R&L 6B2	%	0.23	0.89	0.42	0.63
Copper Ex	DTPA	R&L 12A1	mg/kg	0.63	0.33	0.38	0.44
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.32	0.27	0.34	0.30
Manganese Ex	DTPA	R&L 12A1	mg/kg	0.73	8.87	1.84	12.9
Iron Ex	DTPA	R&L 12A1	mg/kg	27.9	189	60.8	228
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.18	0.28	0.56	0.38
Sol Calcium	SAR	In House	mg/kg	14.5	2.39	11.7	1.59
Sol Magnesium	SAR	In House	mg/kg	203	4.11	81.0	2.87
Sol Sodium	SAR	In House	mg/kg	725	23.8	231	13.9
SAR	calculation		meq/100g	30.9	1.01	9.84	0.59
Potassium Ex	Colwell	R&L 9B1	mg/kg	156	71.9	58.9	166
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.40	0.18	0.15	0.43
				mg/kg meq/100g	mg/kg meq/100g	mg/kg neq/100ç	mg/kg meq/100g
Potassium Ex	NH₄CI	R&L 15A1	-	158 0.41	37.7 0.10	45.0 0.12	61.4 0.16
Calcium Ex	NH₄CI	R&L 15A1	•	68.0 0.34	181 0.91	113 0.57	242 1.21
Magnesium Ex	NH₄CI	R&L 15A1	-	1770 14.8	162 1.35	905 7.54	179 1.49
Sodium Ex	NH₄CI	R&L 15A1	2	1343 5.84	58.7 0.26	554 2.41	37.6 0.16
Ex Potassium %	Calc	Calc	%	1.90	3.71	1.09	5.21
Ex Calcium %	Calc	Calc	%	1.59	34.7	5.31	40.0
Ex Magnesium %	Calc	Calc	%	69.1	51.8	70.9	49.4
Ex Sodium %	Calc	Calc	%	27.4	9.79	22.7	5.41
ECEC	Calc	Calc	meq/100g	21.3	2.61	10.6	3.02
Ca/Mg Ratio	Calc	Calc	meq/100g	0.02	0.67	0.07	0.81

Señviroag

Project No: EW120674

Location: Leewood

		S	ample ID	L4	L6	L6	L10
Test Parameter	Method Description	Method Reference	Depth Units	110-130cm 120674-9	0-15cm 120674-10	15-30cm 120674-11	0-15cm 120674-12
Particle Size Analysis	(Hydrometer)						
Clay	Hydrometer	ASTM D422-63	%	32.3	21.8	25.2	20.1
Silt	Hydrometer	ASTM D422-63	%	7.3	0.7	1.2	0.6
Fine Sand	Hydrometer	ASTM D422-63	%	41.3	29.0	31.6	27.0
Coarse Sand	Hydrometer	ASTM D422-63	%	19.0	48.5	42.0	52.2
Gravel	Hydrometer	ASTM D422-63	%	0.0	0.0	0.0	0.1
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.02	0.02	0.01	0.04
EAT	In water	In House	Class	2	8	1	8
EAT	In SAR 6	In House	Class	6	8	6	8
Bulk Density	Clod/compaction	ASTMF1815	g/cm ³	1.32	1.65	1.51	1.55
Total Porosity	BD and PD	ASTMF1815	% v/v	48.9	38.9	43.1	44.0
Capillary Porosity	Calc	ASTMF1815	% v/v	27.4	21.0	20.3	21.2
Air Filled Porosity	Calc	ASTMF1815	% v/v	22.0	17.9	22.8	22.8
Water Retention	30cm tension	ASTMF1815	% v/v	20.8	12.7	13.5	13.6
Moisture	oven dry	ASTMF1815	% v/v	13.3	2.52	7.26	2.87
Texture	McDonald et al	In House	Class	MC	*	*	*

Project No: EW120674

Location: Leewood

		S	ample ID	L1	0	L1	2	L1:	2	L1	2	
	Method	Method	Depth	15-30)cm	0-15	icm	15-30	cm	30-5	Ocm	
Test Parameter	Description	Reference	Units	12067	4-13	12067	4-14	12067	4-15	12067	/4-16	
Chlorides	Probe	R&L 5A1	mg/kg	8.5	50	26	.0	95.	0	18		
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.0)9	0.0)5	0.1	5	0.2		
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	4.6	60	4.	53	5.0	1	5.3	27	
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	2.3	37	2.6	33	3.7	2	4.4		
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	13	.0	15	.8	12.	7	12	.8	
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	70	.5	80	.0	76.	1	68	.4	
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	1.	59	6.8	84	7.9	4	17	.0	
Organic Carbon	LECO	R&L 6B2	%	0.	54	0.0	81	0.7	0	0.4		
Copper Ex	DTPA	R&L 12A1	mg/kg	0.3	22	0.3	26	0.3	8		43	
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.	15	0.3	35	0.1	7		18	
Manganese Ex	DTPA	R&L 12A1	mg/kg	4.	46	13	9.5	3.8			23	
Iron Ex	DTPA	R&L 12A1	mg/kg	13	35	12	25	10	7		.9	
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.	19	0.	32	0.5	53	0.	51	
Sol Calcium	SAR	In House	mg/kg	2.	47	8.	12	16	.7).2	
Sol Magnesium	SAR	In House	mg/kg	4.	78	24	.4	20	8	12	25	
Sol Sodium	SAR	In House	mg/kg	15	6.6	56	6.5	27			34	
SAR	calculation		meq/100g	0.	66	2.	41	11	.7		.2	
Potassium Ex	Colwell	R&L 9B1	mg/kg	52	2.4	96	6.4	69			.0	
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.	13	0.	25	0.1	8	0.	18	
				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100ç	mg/kg	meq/100g	
Potassium Ex	NH ₄ CI	R&L 15A1	-	18.7	0.05	79.1	0.20	59.3	0.15	66.2	0.17	
Calcium Ex	NH₄CI	R&L 15A1	-	125	0.63	265	1.33	141	0.71	111	0.56	-
Magnesium Ex	NH₄CI	R&L 15A1	-	140	1.17	293	2.44	1120	9.33	1324	11.0	
Sodium Ex	NH ₄ Cl	R&L 15A1	-	34.4	0.15	109	0.47		2.30	758	3.30	
Ex Potassium %	Calc	Calc	%		41		56	1.2			13	
Ex Calcium %	Calc	Calc	%		1.4		9.8	5.6			69	
Ex Magnesium %	Calc	Calc	%		3.7		5.0	74			3.3	
Ex Sodium %	Calc	Calc	%		52		0.7	18			1.9	
ECEC	Calc	Calc	meq/100g		99		44	12			5.1	
Ca/Mg Ratio	Calc	Calc	meq/100g	0.	54	0.	54	0.0	78	0.	05	

Señviroag

Project No: EW120674

Location: Leewood

		Sa	ample ID	L10	L12	L12	L12
Test Parameter	Method Description	Method Reference	Depth Units	15-30cm 120674-13	0-15cm 120674-14	15-30cm 120674-15	30-50cm 120674-16
Particle Size Analysis	(Hydrometer)			an aprillation of the second	TELEVISION OF A PARTY		
Clay	Hydrometer	ASTM D422-63	%	20.1	24.0	27.8	25.3
Silt	Hydrometer	ASTM D422-63	%	0.8	1.9	1.4	2.1
Fine Sand	Hydrometer	ASTM D422-63	%	27.3	30.0	33.1	31.9
Coarse Sand	Hydrometer	ASTM D422-63	%	51.7	44.0	37.7	40.3
Gravel	Hydrometer	ASTM D422-63	%	0.1	0.1	0.1	0.3
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.01	0.003	0.01	0.01
EAT	In water	In House	Class	8	2	1	2
EAT	In SAR 6	In House	Class	6	6	6	6
Bulk Density	Clod/compaction	n ASTMF1815	g/cm ³	1.66	1.62	1.44	1.42
Total Porosity	BD and PD	ASTMF1815	% v/v	37.5	39.6	43.9	42.0
Capillary Porosity	Calc	ASTMF1815	% v/v	19.6	18.1	18.1	18.8
Air Filled Porosity	Calc	ASTMF1815	% v/v	17.9	21.5	25.7	23.2
Water Retention	30cm tension	ASTMF1815	% v/v	11.8	11.2	12.6	13.2
Moisture	oven dry	ASTMF1815	% v/v	2.38	4.56	8.75	10.5
Texture	McDonald et al	In House	Class	*	FSCL	FSCL	FSCL

Project No: EW120674

Location: Leewood

		5	ample ID	L1:	2	L1	2	L1:	2	L1	2
Test Parameter	Method Description	Method Reference	Depth Units	50-70 12067		70-90 12067		90-11 12067		110-1 1206	30cm 74-20
Chlorides	Probe	R&L 5A1	mg/kg	31	5	35	5	34	5	20	00
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.3	5	0.3	34	0.3	5	0.	24
pH (CaCl₂)	Electrode	R&L 4B1	pH units	6.2	4	6.3	88	6.8	3	6.	63
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	8.8	4	4.8	31	3.3	1	3.	43
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	12	.2	14	.3	17	.3	13	8.7
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	67	.0	67	.4	67	.9	61	.3
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	29	.0	32	.4	35	.8	22	2.3
Organic Carbon	LECO	R&L 6B2	%	0.2	27	0.2	20	0.1	4	0.	14
Copper Ex	DTPA	R&L 12A1	mg/kg	0.4	4	0.5	57	0.6	63	0.	63
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.1	6	0.4	14	0.2	23	0.	28
Manganese Ex	DTPA	R&L 12A1	mg/kg	1.8	35	0.7	71	1.4	3	1.	65
Iron Ex	DTPA	R&L 12A1	mg/kg	23	.6	24	.0	30	.0	44	1.2
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.4	13	0.3	33	0.3	32	0.	32
Sol Calcium	SAR	In House	mg/kg	4.7	77	8.8	57	4.1	6	6.	17
Sol Magnesium	SAR	In House	mg/kg	13	.5	27	0	11	.3	1	66
Sol Sodium	SAR	In House	mg/kg	33	9	52	21	33	8	3	13
SAR	calculation		meq/100g	14	.4	22	.2	14	.4	13	3.3
Potassium Ex	Colwell	R&L 9B1	mg/kg	14	6	12	25	11	0	1	62
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.3	37	0.3	32	0.2	28	0.	42
				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100ç	mg/kg	meq/100
Potassium Ex	NH₄CI	R&L 15A1	i n ;	103	0.26	94.7	0.24	107	0.27	123	0.32
Calcium Ex	NH₄CI	R&L 15A1	•	95.8	0.48	79.5	0.40	96.4	0.48	76.0	0.38
Magnesium Ex	NH₄CI	R&L 15A1		1779	14.8	1888	15.7	1871	15.6	1711	14.3
Sodium Ex	NH₄CI	R&L 15A1	: - :	1111	4.83	1159	5.04		5.03	1046	
Ex Potassium %	Calc	Calc	%	1.:			13		28	-	.62
Ex Calcium %	Calc	Calc	%	2.3			86	2.:			.95
Ex Magnesium %	Calc	Calc	%	72	2.7		8.5		.9		3.1
Ex Sodium %	Calc	Calc	%		3.7	23	3.5		.5		3.3
ECEC	Calc	Calc	meq/100g	20).4	21	.4		.4		9.5
Ca/Mg Ratio	Calc	Calc	meq/100g	0.	03	0.	03	0.	03	0	.03

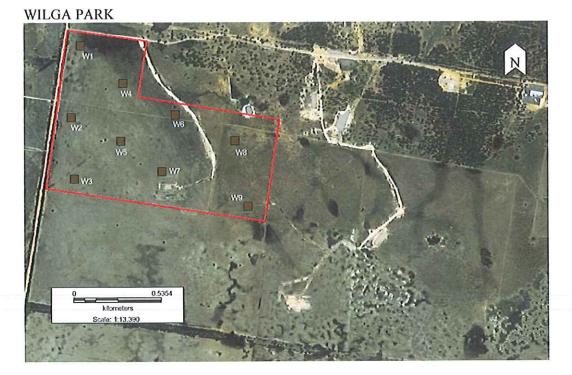
Señviroag g

Project No: EW120674

Location: Leewood

		S	ample ID	L12	L12	L12	L12	
Test Parameter	t Parameter Method Method Description Reference		Depth Units	50-70cm 120674-17	70-90cm 120674-18	90-110cm 120674-19	110-130cm 120674-20	
Particle Size Analysis	(Hydrometer)							
Clay	Hydrometer	ASTM D422-63	%	24.0	26.9	23.9	23.7	
Silt	Hydrometer	ASTM D422-63	%	3.0	2.1	1.9	2.0	
Fine Sand	Hydrometer	ASTM D422-63	%	32.7	32.7	32.2	32.2	
Coarse Sand	Hydrometer	ASTM D422-63	%	40.3	38.3	42.0	42.1	
Gravel	Hydrometer	ASTM D422-63	%	0.0	0.0	0.0	0.0	
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.01	0.01	0.01	0.01	
EAT	In water	In House	Class	1	3a	3a	3a	
EAT	In SAR 6	In House	Class	6	6	6	6	
Bulk Density	Clod/compaction	n ASTMF1815	g/cm ³	1.39	1.41	1.44	1.51	
Total Porosity	BD and PD	ASTMF1815	% v/v	42.4	43.1	43.2	38.5	
Capillary Porosity	Calc	ASTMF1815	% v/v	19.6	20.5	21.2	23.0	
Air Filled Porosity	Calc	ASTMF1815	% v/v	22.8	22.6	22.0	15.5	
Water Retention	30cm tension	ASTMF1815	% v/v	14.1	14.5	10		
Moisture	oven dry	ASTMF1815	% v/v	13.7	15.1	14.1	15.6	
Texture	McDonald et al	In House	Class	SC	SC	SC	SC	

Project No: EW120674


Location: Leewood

		5	Sample ID	L	13	L1	3	L1	5	Ľ	15	
Test Parameter	Method Description	Method Reference	Depth 0-15cm Units 120674-21			15-30cm 120674-22		0-15cm 120674-25		15-30cm 120674-26		
Chlorides	Probe	R&L 5A1	mg/kg	30.0		100		21.5		39.0		
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.05		0.18		0.0	0.04		0.07	
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	5.20		6.07		4.3	4.37		4.59	
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	2.22		2.94		4.49		2.72		
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	15.6		13.0		14.1		16.7		
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	76.1		76.1		96.7		84.1		
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	3.36		6.58		10.5		2.94		
Organic Carbon	LECO	R&L 6B2	%	0.68		0.48		1.11		0.68		
Copper Ex	DTPA	R&L 12A1	mg/kg	0.55		0.48		0.34		0.34		
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.42		0.24		0.25		0.32		
Manganese Ex	DTPA	R&L 12A1	mg/kg	20.6		2.68		11.9		3.82		
Iron Ex	DTPA	R&L 12A1	mg/kg	89.6		69.0		163		153		
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.35		0.41		0.35		0.62		
Sol Calcium	SAR	In House	mg/kg	15.3		11.6		6.54		40.7		
Sol Magnesium	SAR	In House	mg/kg	59.8		43.6		21.8		7.9		
Sol Sodium	SAR	In House	mg/kg	72.9		199		32	32.7		21.4	
SAR	calculation	-	meq/100g	3.11		8.48		1.39		0.91		
Potassium Ex	Colwell	R&L 9B1	mg/kg	74.7		69.4		116		518		
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.19		0.18		0.30		1.33		
				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100ç	mg/kg	meq/100	
Potassium Ex	NH₄CI	R&L 15A1	-	45.6	0.12	61.8	0.16	91.5	0.23	68.6	0.18	
Calcium Ex	NH₄CI	R&L 15A1	-	329	1.65	309	1.55	253	1.27	155	0.8	
Magnesium Ex	NH₄CI	R&L 15A1	•	461	3.84	1115	9.29	324	2.70	842	7.02	
Sodium Ex	NH₄CI	R&L 15A1	•	128	0.56	484	2.10		0.36	307	1.33	
Ex Potassium %	Calc	Calc	%	1.90		1.21		5.14		1.89		
Ex Calcium %	Calc	Calc	%	26.70		11.8		27.7		8.33		
Ex Magnesium %	Calc	Calc	%	62.4		70.9		59.2		75.4		
Ex Sodium %	Calc	Calc	%	9.03		16.1		7.97		14.3		
ECEC	Calc	Calc	meq/100g	6.16		13.1		4.56		9.3		
Ca/Mg Ratio	Calc	Calc	meq/100g	0.43		0.17		0.47		0.11		

Senviroag

Project No:	EW1206	EW120674 Location:		Leewood			
		:	Sample ID	L13	L13	L15	L15
Test Parameter	Method Description	Method Reference	Depth Units	0-15cm 120674-21	15-30cm 120674-22	0-15cm 120674-25	15-30cm 120674-26
Particle Size Analysis	(Hydrometer)						
Clay	Hydrometer	ASTM D422-63	%	26.0	28.9	24,9	23.2
Silt	Hydrometer	ASTM D422-63	%	1.9	1.9	2.6	2.7
Fine Sand	Hydrometer	ASTM D422-63	%	30.8	33.2	35.6	36.6
Coarse Sand	Hydrometer	ASTM D422-63	%	41.3	35.9	36.8	37.4
Gravel	Hydrometer	ASTM D422-63	%	0.0	0.1	0.1	0.1
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	7 mm∕hr	0.001	0.002	0.002	0.003
EAT	In water	In House	Class	3a	1	3a	1
EAT	In SAR 6	In House	Class	6	6	8	6
Bulk Density	Clod/compaction	ASTMF1815	g/cm ³	1.55	1.43	1.56	1.57
Total Porosity	BD and PD	ASTMF1815	% v/v	41.4	45.5	39.1	33.8
Capillary Porosity	Calc	ASTMF1815	% v/v	20.8	19.8	22.0	22.5
Air Filled Porosity	Calc	ASTMF1815	% v/v	20.5	25.6	17.1	11.3
Water Retention	30cm tension	ASTMF1815	% v/v	13.5	13,90	14.1	14.4
Moisture	oven dry	ASTMF1815	% v/v	3.76	8.66	3.95	9.23
Texture	McDonald et al	In House	Class	*	*	*	*

Wilga Park

Pit Point	X	Y
W1	149.650134	-30.360460
W2	149.650321	-30.364071
W3	149.651206	-30.367161
W4	149.653259	-30.362408
W5	149.653741	-30.365310
W6	149.656909	-30.364068
W7	149.656694	-30.366921
W8	149.660992	-30.365447
W9	149.662528	-30.368768

Project No: EW120674

Location: Wilga Park

			Sample ID	1	W1	١	W1	V	V4	3	W4
Test Parameter	Method	Method	Depth	0-1	l5cm	15-	30cm	0-1	5cm	15-	30cm
	Description	Reference	Units	1206	674-27	1206	674-28	1206	74-29	120	674-30
Chlorides	Probe	R&L 5A1	mg/kg	1	4.5	1	3.5	1;	3.5	1	5.5
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0	.13	0	.15	0.	.13	C).18
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	7	.74	7	.95	7.	.34	7	.95
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	6	.23	2	.69	4.	16	2	.66
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	1	6.2	1	1.9	1	5.6	1	5.2
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	1	04	1	18	9	5.9		119
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	1	2.0	Ę	5.3		0.3		.81
Organic Carbon	LECO	R&L 6B2	%	1	.11		.44		17		.21
Copper Ex	DTPA	R&L 12A1	mg/kg	1	.17		.97		91		.97
Zinc Ex	DTPA	R&L 12A1	mg/kg	0	.53		.41		28		.81
Manganese Ex	DTPA	R&L 12A1	mg/kg	y/kg 37.3		15.0			4.6	27.7	
Iron Ex	DTPA	R&L 12A1	mg/kg	kg 37.9		30.9		53.2		50.0	
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.	.62	0.91		0.62		0.49	
Sol Calcium	SAR	In House	mg/kg	4	0.7	19.4		101			81
Sol Magnesium	SAR	In House	mg/kg	7.	.90	6.36		76.3			8.1
Sol Sodium	SAR	In House	mg/kg	2	1.4	89.0			14		237
SAR	calculation		meq/100g	0.	.91	3.79			86		0.1
Potassium Ex	Colwell	R&L 9B1	mg/kg	5	18	292			80		23
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	1.	.33	0.	.75		46		.57
				mg/kg	meq/100g	mg/kg	meq/100g	mg/kg	neq/100ç	mg∕kg	meq/100g
Potassium Ex	NH₄CI	R&L 15A1	-	498	1.28	288	0.74	175	0.45	211	0.54
Calcium Ex	NH₄CI	R&L 15A1	-	7909	39.5	7649	38.2	4235	21.2	7674	
Magnesium Ex	NH₄CI	R&L 15A1	8	607	5.06	925	7.71	545	4.54	761	6.34
Sodium Ex	NH₄CI	R&L 15A1		52.4	0.23	194	0.84	173	0.75	417	1.81
Ex Potassium %	Calc	Calc	%		.77	1.	.55	1.	67		.15
Ex Calcium %	Calc	Calc	%		5.8	80	0.5	78	3.7	8	1.5
Ex Magnesium %	Calc	Calc	%	11	1.0	16	6.2	16	6.9	1	3.5
Ex Sodium %	Calc	Calc	%	0.	49	1.	.77	2.	79	3	.85
ECEC	Calc	Calc	meq/100g	46	3.1	47	7.5	26	6.9	4	7.1
Ca/Mg Ratio	Calc	Calc	meg/100g	7.82				4.96 4.0		6	.05

Project No: EW12067		74 Location: Wilga Park							
			mple ID	W1	W1	W4	W4		
Test Parameter	Method Description	Method Reference	Depth Units	0-15cm 120674-27	15-30cm 120674-28	0-15cm 120674-29	15-30cm 120674-30		
Particle Size Analysis	(Hydrometer)								
Clay	Hydrometer	ASTM D422-63	%	33.2	31.1	34.4	31.6		
Silt	Hydrometer	ASTM D422-63	%	1.8	2.3	1.3	2.6		
Fine Sand	Hydrometer	ASTM D422-63	%	33.1	33.4	35.9	37.7		
Coarse Sand	Hydrometer	ASTM D422-63	%	31.8	32.4	28.3	28.0		
Gravel	Hydrometer	ASTM D422-63	%	0.1	0.7	0.1	0.1		
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.01	0.01	0.04	0.04		
EAT	In water	In House	Class	4	4	5	4		
EAT	In SAR 6	In House	Class	4	4	6	4		
Bulk Density	Clod/compaction	ASTMF1815	g/cm ³	1.38	1.43	1.38	1.45		
Total Porosity	BD and PD	ASTMF1815	% v/v	42.8	37.5	43.5	34.0		
Capillary Porosity	Calc	ASTMF1815	% v/v	28.1	27.2	29.4	27.0		
Air Filled Porosity	Calc	ASTMF1815	% v/v	14.7	10.2	14.1	9.9		
Water Retention	30cm tension	ASTMF1815	% v/v	20.3	19.0	21.3	18.7		
	oven dry	ASTMF1815	% v/v	22.3	21.9	17.3	20.2		
Moisture	McDonald et al	In House	Class		0.00010.0000				
Texture	MCDonaid et al	in nouse	01000						

4.51 ENALA 2067A 100 -

Señviroag

Project No: EW120674

Location: Wilga Park

		i	Sample ID		W5		W5	1	N5		W5
Test Parameter	Method	Method	Depth		15cm	15-	30cm	30-	50cm	50-	70cm
011.11	Description	Reference	Units	18/00/07/2	674-31	120	674-32	1206	674-33	120	674-34
Chlorides	Probe	R&L 5A1	mg/kg	1	2.0	1	3.5	1	7.0		140
Electrical Conductivity	Soil:Water (1:5)		dS/m	0	0.12	C	.16	0	.19	C	.42
pH (CaCl₂)	Electrode	R&L 4B1	pH units	7	.74	7	.98	8	.06	8	3.42
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	4	.49	2	.72	2	.49	1	.90
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	1	4.1	1	2.9	1.	4.5	1	1.5
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	1	16	1	25	9	6.8		7.4
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	2	.78	3	.87	2	94	200	3.2
Organic Carbon	LECO	R&L 6B2	%	0	.68	0	.93		47		.24
Copper Ex	DTPA	R&L 12A1	mg/kg	0	.98	0	.71	0700	68		.58
Zinc Ex	DTPA	R&L 12A1	mg/kg	0	.30	0.00	.19		85		.31
Manganese Ex	DTPA	R&L 12A1	mg/kg	31.5		17.5		21.8		22.4	
Iron Ex	DTPA	R&L 12A1	mg/kg			39.3		45.9		54.2	
Boron Ex	CaCl2	R&L 12C2	mg/kg		.63	0.56		0.56		1.33	
Sol Calcium	SAR	In House	mg/kg		30	16.0		12.8			.98
Sol Magnesium	SAR	In House	mg/kg		54		.23		57		
Sol Sodium	SAR	In House	mg/kg		5.1		40		57 64	5.	.85 71
SAR	calculation		meg/100g		.35		.96		99		5.8
Potassium Ex	Colwell	R&L 9B1	mg/kg		24		72			10	50.5
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g		.57		44		54 39		13 .29
				mg/kg	meq/100g	mg∕kg	meq/100g	mg/kg	neq/100ç	mg/kg	meq/100g
		R&L 15A1	٠	233	0.60	126	0.32	133	0.34	106	0.27
		R&L 15A1	-	6398	32.0	8375	41.9	7539	37.7	5550	27.8
	NH₄CI	R&L 15A1		520	4.33	897	7.48	909	7.58	1158	9.65
	NH₄CI	R&L 15A1		56.8	0.25	338	1.47	412	1.79	1037	4.51
	Calc	Calc	%	1.	61	0.	63	0.1			64
	Calc	Calc	%	86	6.1	81	.9	79	.5		5.8
	Calc	Calc	%	11	1.7	14	1.6	16	.0		2.9
	Calc	Calc	%	0.	66	2.	87	3.7).7
ECEC	Calc	Calc	meq/100g	37	.2	51	.1	47		103-33	2.2
Ca/Mg Ratio	Calc	Calc	meq/100g	7.	38	5.	60	4.9	8 4		88

Project No: EW120674

W5 W5 W5 Sample ID W5 50-70cm 30-50cm 15-30cm Depth 0-15cm Method Method **Test Parameter** 120674-34 120674-33 120674-32 Reference 120674-31 Description Units Particle Size Analysis (Hydrometer) 32.5 29.9 32.4 29.8 % Hydrometer ASTM D422-63 Clay 2.4 1.7 2.5 ASTM D422-63 % 2.4 Hydrometer Silt 33.2 33.2 38.3 34.3 ASTM D422-63 % Fine Sand Hydrometer 33.7 28.9 30.7 29.2 % Hydrometer ASTM D422-63 Coarse Sand 3.1 1.5 0.2 Hydrometer 0.1 ASTM D422-63 % Gravel 0.5 1.0 0.6 mm/hr 1.9 ASTM F1815-97 30cm tension Saturated Hydraulic Cond. 3a 4 5 4 Class EAT In water In House 4 4 4 6 Class EAT In SAR 6 In House 1.38 1.43 1.45 Clod/compaction ASTMF1815 g/cm³ 1.46 **Bulk Density** 37.5 42.8 38.3 34.0 ASTMF1815 % v/v BD and PD **Total Porosity** 26.0 28.4 24.7 27.1 % v/v ASTMF1815 Capillary Porosity Calc 12.2 15.6 14.2 10.0 Air Filled Porosity Calc ASTMF1815 % v/v 19.6 18.1 17.1 19.5 ASTMF1815 % v/v 30cm tension Water Retention 16.2 16.9 19.6 ASTMF1815 % v/v 18.9 Moisture oven dry CL CL CL CL Class McDonald et al In House Texture

Location: Wilga Park

Senviroag

Project No: EW120674

Location: Wilga Park

			Sample ID W5		W5	W5		W5			W7
Test Parameter	Method	Method	Depth	70-	90cm	90-1	l10cm	110-	130cm	0-'	15cm
	Description	Reference	Units	120	674-35	120674-36		120674-37		120674-38	
Chlorides	Probe	R&L 5A1	mg/kg	2	275	4	00	3	85	1	0.0
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0	.54	0	.33	0	.16		0.07
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	8	.47	8	.37		.53		6.89
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	2	.34	2	.84		.57	1.12	3.34
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	1	1.4	1	2.8		3.0		6.9
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	7	7.0		6.1		4.2		3.5
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	8	5.6		89		51		3.2
Organic Carbon	LECO	R&L 6B2	%	0	.15		.16		.13		.96
Copper Ex	DTPA	R&L 12A1	mg/kg	0	.52		.59	1000	.61		.11
Zinc Ex	DTPA	R&L 12A1	mg/kg	0	.17	1000	.17		15		.20
Manganese Ex	DTPA	R&L 12A1	mg/kg		4.8	10000	3.9		2.2	100	0.2
Iron Ex	DTPA	R&L 12A1	mg/kg			37.8		56.8		42.1	
Boron Ex	CaCl2	R&L 12C2	mg/kg		.26		.32		10		.43
Sol Calcium	SAR	In House	mg/kg		.55		4.7		04		49
Sol Magnesium	SAR	In House	mg/kg		.27		3.2		93		49 19
Sol Sodium	SAR	In House	mg/kg		70		03		69		7.6
SAR	calculation		meg/100g		0.0	500	9.9		3.5		.16
Potassium Ex	Colwell	R&L 9B1	mg/kg		21		27		12		47
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g		31		33		29		.38
Potassium Ex	NH4CI	R&L 15A1	~	mg/kg	meq/100g		meq/100g	() E () E	neq/100ç	00	meq/100g
Calcium Ex	NH ₄ CI	R&L 15A1		114	0.29	91.6	0.23	95.1	0.24	134	0.34
Magnesium Ex	NH₄CI	R&L 15A1	•	3979	19.9	1785	8.93	1262		3578	17.9
Sodium Ex	NHACI	R&L 15A1		1100	9.17	1148	9.57	1051		422	3.52
Ex Potassium %	Calc	Calc	- %	1160	5.04 85	1421	6.18		6.18	167	0.73
Ex Calcium %	Calc	Calc	%		oo 7.8	35	94	1.1			53
Ex Magnesium %	Calc	Calc	%	1.562	.0 3.6	18/8		29			9.6
Ex Sodium %	Calc	Calc	%	1.000	.0 .7	38		40			5.6
ECEC	Calc	Calc	70 meq/100g		.4	24		28		1000	23
Ca/Mg Ratio		Calc	meq/100g meq/100g			24	and the second sec	21	351		2.5
		oulo	mey roug	2.	17	0.9	93	0.7	12	5.	09

Senviroag

Project No: EW120674

W7 Sample ID **W**5 W5 W5 0-15cm 110-130cm 70-90cm 90-110cm Depth Method Method **Test Parameter** 120674-38 Reference 120674-36 120674-37 Description 120674-35 Units Particle Size Analysis (Hydrometer) 26.7 29.9 22.1 25.5 % ASTM D422-63 Clay Hydrometer 0.6 4.3 4.0 2.2 Silt Hydrometer ASTM D422-63 % 43.2 36.3 35.3 ASTM D422-63 % 34.6 Fine Sand Hydrometer 30.5 34.2 36.4 34.1 ASTM D422-63 % Hydrometer Coarse Sand 0.1 0.0 0.1 0.1 % Hydrometer ASTM D422-63 Gravel 0.004 0.5 0.5 0.5 Saturated Hydraulic Cond. ASTM F1815-97 mm/hr 30cm tension 3a 1 3b 3a Class EAT In water In House 6 6 4 4 Class In House EAT In SAR 6 1.45 1.46 1.45 1.38 **Bulk Density** Clod/compaction ASTMF1815 g/cm³ 34.0 34.0 38.3 ASTMF1815 % v/v 43.5 BD and PD **Total Porosity** 29.8 28.5 32.3 31.7 ASTMF1815 % v/v **Capillary Porosity** Calc 11.0 6.1 7.8 13.7 % v/v ASTMF1815 Air Filled Porosity Calc 22.2 21.9 19.70 21.60 Water Retention 30cm tension ASTMF1815 % v/v 11.5 9.09 11.8 ASTMF1815 % v/v 12.0 oven dry Moisture FSCL Class FSCL FSCL McDonald et al In House Texture

Location: Wilga Park

Senviroag

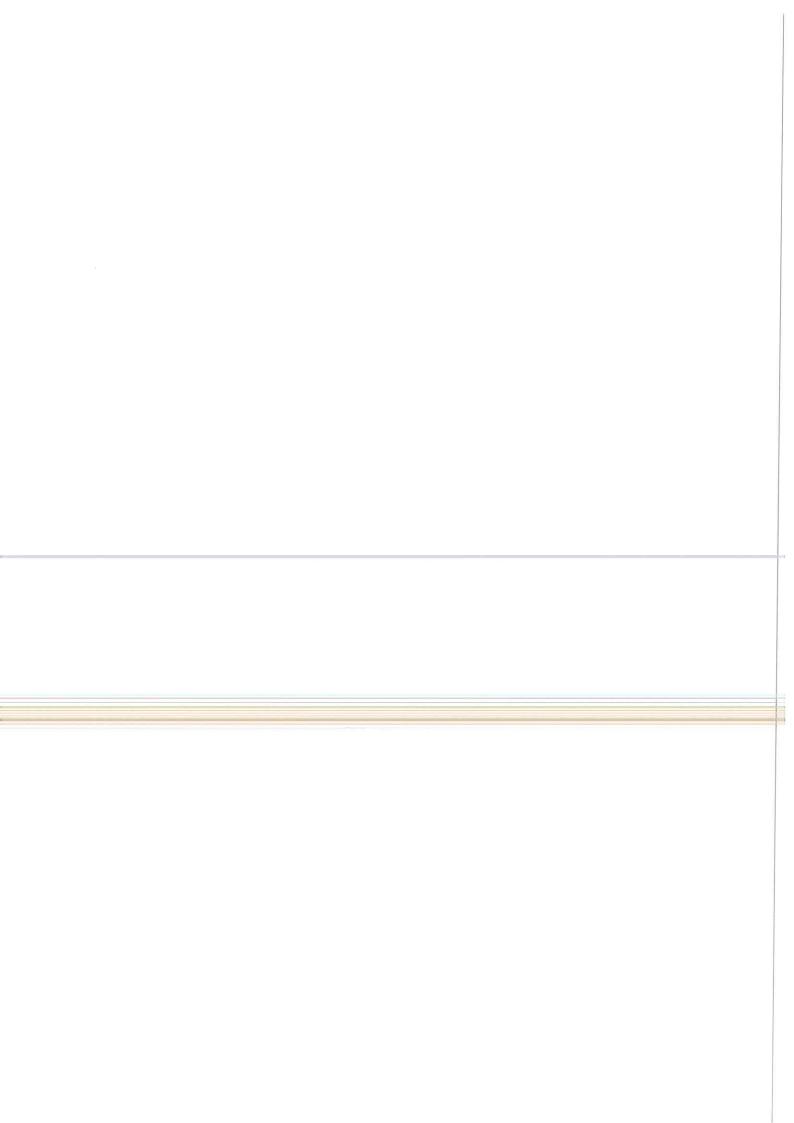
Project No: EW120674

Lo

Location: Wilga Park

		1	Sample ID	W7		
Test Parameter	Method Description	Method Reference	Depth Units	15-30cm 120674-39)	
Chlorides	Probe	R&L 5A1	mg/kg	16.0		
Electrical Conductivity	Soil:Water (1:5)	R&L 3A1	dS/m	0.21		
pH (CaCl ₂)	Electrode	R&L 4B1	pH units	7.97		
NO ₃ -Nitrogen Ex	Aqueous	In House	mg/kg	2.37		
Phosphorus Ex	Colwell	R&L 9B1	mg/kg	15.7		
Phosphorus Buffer Index	PBI (Col)	R&L 912a	mg/kg	91.1		
Sulphur Ex	KCI-40	R&L 10D1	mg/kg	11.1		
Organic Carbon	LECO	R&L 6B2	%	0.51		
Copper Ex	DTPA	R&L 12A1	mg/kg	0.85		
Zinc Ex	DTPA	R&L 12A1	mg/kg	0.00		
Manganese Ex	DTPA	R&L 12A1	mg/kg	25.2		
Iron Ex	DTPA	R&L 12A1	mg/kg	37.7		
Boron Ex	CaCl2	R&L 12C2	mg/kg	0.43		
Sol Calcium	SAR	In House	mg/kg	296		
Sol Magnesium	SAR	In House	mg/kg	208		
Sol Sodium	SAR	In House	mg/kg	305		
SAR	calculation	122	meq/100g	13.0		
Potassium Ex	Colwell	R&L 9B1	mg/kg	113		
Potassium Ex	Colwell	R&L 9B1/AAS	meq/100g	0.29		
				mg/kg meq/10	Da .	
Potassium Ex	NH₄CI	R&L 15A1		123 0.32		
alcium Ex		R&L 15A1	-	6534 32.7		
agnesium Ex		R&L 15A1	-	588 4.90		
odium Ex	NH₄CI	R&L 15A1	-	434 1.89		
x Potassium %	Calc	Calc	%	0.79		
x Calcium %	Calc	Calc	%	82.1		
K Magnesium %	Calc	Calc	%	12.3		
x Sodium %	Calc	Calc	%	4.74		
CEC	Calc	Calc	meq/100g	39.8		
a/Mg Ratio	Calc	Calc	meq/100g	6.67		

Project No: EW120674


Location: Wilga Park

		Sa	mple ID	W7
Test Parameter	Method Description	Method Reference	Depth Units	15-30cm 120674-39
Particle Size Analysis	(Hydrometer)			
Clay	Hydrometer	ASTM D422-63	%	27.0
Silt	Hydrometer	ASTM D422-63	%	2.2
Fine Sand	Hydrometer	ASTM D422-63	%	34.6
Coarse Sand	Hydrometer	ASTM D422-63	%	36.2
Gravel	Hydrometer	ASTM D422-63	%	0.0
Saturated Hydraulic Cond.	30cm tension	ASTM F1815-97	mm/hr	0.003
EAT	In water	In House	Class	4
EAT	In SAR 6	In House	Class	4
Bulk Density	Clod/compaction	ASTMF1815	g/cm ³	1.31
Total Porosity	BD and PD	ASTMF1815	% v/v	50.5
Capillary Porosity	Calc	ASTMF1815	% v/v	29.3
Air Filled Porosity	Calc	ASTMF1815	% v/v	21.2
Water Retention	30cm tension	ASTMF1815	% v/v	22.5
Moisture	oven dry	ASTMF1815	% v/v	10.5
Texture	McDonald et al	In House	Class	*

This Analysis Report shall not be reproduced except in full without the written approval of the laboratory.

DOCUMENT END

Meeting Action Item Response

Reference:	140611_NCCC
Cubiast	Masting Astion Itoms [Itom 1] June Masting
Subject:	Meeting Action Items [Item 1] – June Meeting
	Narrabri CCC
Request	11 June 2014
date:	
Requested	David Ross
by:	Chair
	Narrabri CCC
Background Request:	Questions tabled at meeting by member
Response:	 Question 1 - If the leak was detected around the same time as the Bibblewindi leak, why is it not mentioned in the EPA Investigation Report? The EPA investigation of Bibblewindi and Tintsfield were done separately as part of two separate EPA requests for information.
	 Question 2 - What was the naturally occurring level of salinity in both the soils and water at the effected site and what are the elevated levels? The TDS results from monitoring bores immediately adjacent to the Tintsfield ponds range from 1130 – 5520 mg/L (perched water) and 688 – 2140 mg/L (deeper groundwater) systems. Background TDS results from up-gradient piezometers at Tintsfield were 1010 mg/L in the perched water and 1550 mg/L in the deeper groundwater system. The salinity of soils both adjacent to the ponds and in a background location at Tintsfield were not assessed. The TDS of water in the ponds at Tintsfield is 34,320 mg/L.
	 Question 3 - What are the heavy metals as mentioned and what were the naturally occurring levels and the elevated levels in both the effected soils and water? It's unclear what 'as mentioned' is referring too, however the below table lists the heavy metals that reported elevated results in relation to adopted criteria along with corresponding background concentrations for water and soil at Tintsfield, where available. The soil concentrations are from cores collected at Leewood. The elevated water concentrations from all piezometers adjacent to the

ponds.			
Analyte	Elevated Water Conc. (mg/L)	Background Water Conc. (mg/L)	Background Soil Conc. (mg/kg)
Aluminium	1.41	0.44	4660
Boron	0.59	0.24	<50
Copper	0.009	0.002	5
Uranium	35 μg/L	<1 µg/L	0.5
Zinc	0.03	0.007	9
There was no regMore broadly, Sa	will Santos supply e results? th is naturally occ taminant of pote ulatory requirem ntos undertakes	y the members of urring in the env ntial concern in t ent to undertake regional testing o	f the present
 Tintsfield Ponds, east and in a dow Slightly elevated between approxi perched zones. 	of naturally occu s are located imm in a background I vn-gradient locati results salt and se mately 15 – 25 m	rring salts and he rediately around ocation approxir on approximatel elect heavy meta bgl and 31 – 34 r	eavy metals? the periphery of both nately 300 m to the y 200 m to the west. Is were identified mbgl in the shallow
Question 6 – If no we where was the water	•	•	since mid-2012, the
 As previously pre- recommenced or when the pilot is 	peration in Februa		intsfield Pilot is no water produced
 Question 7 – Which from the Bibblewindi	No.3 Pond?		
Water from Bibb	lewindi Pond 3 wa	as transferred to	Tintsfield Pond 2.
Question 8 - We now sample points do not possible to obtain a f	mention Uraniur	n and other Heav	y metals, would it be
leak both before and			

 the shallow perched zones are provided at Attachment One.
Question 9 - Would it also be possible to obtain a copy of the EPAInvestigation Report, as well as any Santos Reports and studies in relation tothe leak? The CCC is still waiting the report on the Bibblewindi leak fromCH2MHILL titled "Hydrological Definition Study"; I suppose that Santos hasasked CH2MHILL to do one on the Tintsfield leak?
 A request for a copy of the EPA investigation reports should be referred to that organization. Santos has provided all reports in relation to the ponds to the EPA as part of their investigation.
Question 10 - How does Santos know that the leak was about 2 litres per day? Does Santos know how long the leak was occurring?
 The water abstraction rates achieved during the recent pilot trial were between 2 – 5 L/day. This relates to water abstracted from two shallow piezometers using a submersible pump. The actual leakage rate would likely be significantly less based on the hydraulic conductivity of silty clays.
 Question 11 - Does Santos know what caused the liner to fail, and if so what was the cause?
• At this stage, it is still unclear whether the elevated salinity underlying Tintsfield Ponds is derived from a failure of the lining of the pond or from natural elevated salinity in the area.
Question 12 - Is Santos or any part of their operation in PEL 238 under continuing Investigations by either the EPA or the OCSG?
 NSW State Government has an extensive audit and compliance program associated with permits and authorities that the individual departments administer. Authority holders may not be aware of all investigations being undertaken so this question is best referred to EPA and/or OCSG. There is one current matter to which Santos is responding: The EPA advised Santos by notice on 24 July 2014 that they were seeking further information in relation to the storage of water at the Tintsfield ponds. On 30 July, EPA provided Santos with a notice to transfer water from Tintsfield Pond 2 to the Bibblewindi water facility by the 14 September 2014. Santos has commenced the transfer of water contained in Tintsfield Pond 2 to Bibblewindi and subsequently to our water facility at

	 Santos was able to commence the work after approval from the PAC which was sought in November last year – was granted in July 2014. As was detailed in our statement on June 5, the removal of water from the pond is part of finalising extensive work on decommissioning and upgrading water storage facilities constructed by a previous operator in and around the Pilliga in north west NSW.
	 Question 13 - When Santos decommissioned the previous operators drill and other ponds located on the well pads and other locations in PEL 238, were any liners or ponds leaking into the surrounding area. If there were leaks, can Santos inform the present Committee where the leaks occurred and what are the elevated levels of "naturally occurring" heavy metals and Salts? Will Santos have these made available to the members of the present Committee? This has been discussed at previous CCC meetings. Please refer to presentations and minutes from November 2012 and February 2013 meetings associated with rehabilitation works.
	 Question 14 - In NSW, has Santos now or in the past engaged any outside security firm that could have joined the ranks of the so called "activists"? If so, was any information passed on to Santos or others about people or activities? Could these activities have been influenced by these outside people? No.
Briefing	Glenn Toogood
Officer:	Team Leader, Water
Date:	4 August 2014
L	<u> </u>

Attachment One

CERTIFICATE OF ANALYSIS				
Work Order	EB	Page	: 1 of 6	
Client	SANTOS LTD	Laboratory	: Environmental Division Brisbane	
Contact	:	Contact	:	
Address	:	Address	:	
E-mail	:	E-mail	:	
Telephone		Telephone		
acsimile	:	Facsimile		
Project	:	QC Level	:	
Order number	:			
C-O-C number	:	Date Samples Received	: 26-MAR-2014	
Sampler	:•	Issue Date	: 09-APR-2014	
Site	: NARRABRI			
		No. of samples received	: 3	
Quote number	:	No. of samples analysed	: 3	

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

Page	: 2 of 6
Work Order	: EB1407245
Client	: SANTOS LTD
Project	 NARRABRI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

NATA	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically compliance with procedures specified in 21 C		ated below. Electronic signing has been carried out in
NAIA	ISO/IEC 17025.	Signatories	Accreditation Category	
\mathbf{V}		Andrew Epps	Metals Production Chemist	Brisbane Acid Sulphate Soils
WORLD RECOGNISED				Brisbane Inorganics
ACCREDITATION		Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics
		Ryan Story	2IC Organic Instrument Chemist	Brisbane Organics

Page	: 3 of 6
Work Order	: EB1407245
Client	: SANTOS LTD
Project	: NARRABRI

Analytical Results

Sub-Matrix: DRILL CUTTINGS (Matrix: SOIL)			ent sample ID	WPKMW1D_SDCUT_1 4_201211151200	WPKMW1D_SDCUT_2 2_201211151200	WPKMW1D_SDCUT_3 6_201211151200	
	Cli	ient sampli	ing date / time	15-NOV-2012 12:00	15-NOV-2012 12:00	15-NOV-2012 12:00	
Compound	CAS Number	LOR	Unit	EB1407245-001	EB1407245-002	EB1407245-003	
EA002 : pH (Soils)							
pH Value		0.1	pH Unit	9.7	8.6	8.6	
EA010: Conductivity							
Electrical Conductivity @ 25°C		1	µS/cm	238	79	136	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0	%	<1.0	<1.0	1.2	
ED008: Exchangeable Cations							
Exchangeable Calcium		0.1	meq/100g	0.8	4.2	7.4	
Exchangeable Magnesium		0.1	meq/100g	0.5	1.9	1.2	
Exchangeable Potassium		0.1	meq/100g	0.2	0.6	1.3	
Exchangeable Sodium		0.1	meq/100g	2.7	2.7	2.8	
Exchangeable Aluminium		0.1	meq/100g	<0.1	<0.1	<0.1	
Exchangeable Sodium Percent		0.1	%	63.5	29.2	22.1	
Cation Exchange Capacity		0.1	meq/100g	4.3	9.4	12.8	
ED021: Bicarbonate Extractable Potassiu	ım (Colwell)						
Bicarbonate Extractable K (Colwell)		10	mg/kg	230	290	720	
ED092: DTPA Extractable Metals							
Copper	7440-50-8	1.00	mg/kg	<1.00	<1.00	2.72	
Iron	7439-89-6	1.00	mg/kg	7.08	7.16	167	
Manganese	7439-96-5	1.00	mg/kg	<1.00	60.2	22.6	
Zinc	7440-66-6	1.00	mg/kg	22.0	<1.00	1.52	
EG005T: Total Metals by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	4670	9350	9230	
Arsenic	7440-38-2	5	mg/kg	<5	<5	6	
Barium	7440-39-3	10	mg/kg	50	180	150	
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1	
Boron	7440-42-8	50	mg/kg	<50	<50	<50	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	10	24	10	
Cobalt	7440-48-4	2	mg/kg	3	6	7	
Copper	7440-50-8	5	mg/kg	<5	8	15	
Iron	7439-89-6	50	mg/kg	11200	29600	38800	
Lead	7439-92-1	5	mg/kg	<5	8	6	
Manganese	7439-96-5	5	mg/kg	30	790	637	

Page	: 4 of 6
Work Order	: EB1407245
Client	: SANTOS LTD
Project	• NARRABRI

Analytical Results

Sub-Matrix: DRILL CUTTINGS (Matrix: SOIL)			ent sample ID	WPKMW1D_SDCUT_1 4_201211151200	WPKMW1D_SDCUT_2 2_201211151200	WPKMW1D_SDCUT_3 6_201211151200	
	Cl	ient sampli	ng date / time	15-NOV-2012 12:00	15-NOV-2012 12:00	15-NOV-2012 12:00	
Compound	CAS Number	LOR	Unit	EB1407245-001	EB1407245-002	EB1407245-003	
EG005T: Total Metals by ICP-AES - Conti	nued						
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	
Nickel	7440-02-0	2	mg/kg	4	9	14	
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	
Strontium	7440-24-6	2	mg/kg	8	15	21	
Tin	7440-31-5	5	mg/kg	<5	<5	<5	
Vanadium	7440-62-2	5	mg/kg	21	49	22	
Zinc	7440-66-6	5	mg/kg	43	13	20	
EG020T: Total Metals by ICP-MS							
Uranium	7440-61-1	0.1	mg/kg	<0.1	0.1	<0.1	
Lithium	7439-93-2	0.1	mg/kg	2.8	5.7	5.8	
EG035T: Total Recoverable Mercury by	FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1	mg/kg	2	1	<1	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lvser					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.2	0.3	0.4	
EK061G: Total Kjeldahl Nitrogen By Dise	crete Analyser						
Total Kjeldahl Nitrogen as N		20	mg/kg	20	70	90	
EK062: Total Nitrogen as N (TKN + NOx)							
↑ Total Nitrogen as N		20	mg/kg	20	70	90	
EK067G: Total Phosphorus as P by Disc	rete Analyser						
Total Phosphorus as P		2	mg/kg	87	195	243	
EK080: Bicarbonate Extractable Phosph	orus (Colwell)						
Bicarbonate Ext. P (Colwell)		2	mg/kg	<2	<2	<2	
EP003: Total Organic Carbon (TOC) in S	oil						
Total Organic Carbon		0.02	%	0.02	0.05	0.06	
EP071 SG: Total Recoverable Hydrocart	oons - NEPM 201	3 - Silica (ael cleanup				
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	
 >C10 - C16 Fraction minus Naphthalene (F2) 		50	mg/kg	<50	<50	<50	

Page	: 5 of 6
Work Order	: EB1407245
Client	: SANTOS LTD
Project	: NARRABRI

Analytical Results

Sub-Matrix: DRILL CUTTINGS (Matrix: SOIL)		Clie	ent sample ID	WPKMW1D_SDCUT_1 4_201211151200	WPKMW1D_SDCUT_2 2_201211151200	WPKMW1D_SDCUT_3 6_201211151200	
	Cl	ient sampli	ng date / time	15-NOV-2012 12:00	15-NOV-2012 12:00	15-NOV-2012 12:00	
Compound	CAS Number	LOR	Unit	EB1407245-001	EB1407245-002	EB1407245-003	
EP071 SG-S: Total Petroleum Hydrocar	bons in Soil - Sili		anup				
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	
EP080/071: Total Petroleum Hydrocarbo	ons						
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	
 >C10 - C16 Fraction minus Naphthalene (F2) 		50	mg/kg	<50	<50	<50	
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	97.3	108	102	
Toluene-D8	2037-26-5	0.1	%	98.2	110	104	
4-Bromofluorobenzene	460-00-4	0.1	%	102	114	108	

Page	: 6 of 6
Work Order	: EB1407245
Client	: SANTOS LTD
Project	: NARRABRI

(ALS)

Surrogate Control Limits

Sub-Matrix: DRILL CUTTINGS	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	52.7	133.7
Toluene-D8	2037-26-5	60.3	131.1
4-Bromofluorobenzene	460-00-4	59.2	126.6

PO BOX 943 INGLEBURN NSW 1898 • TELEPHONE: 0402 060 649 PHOENIXSTRATEGIC.COM.AU

PHOENIX STRATEGIC MANAGEMENT ABN 89 422 045 729

Santos Community Consultative Committee – Narrabri Shire Meeting

Wednesday 23rd July – 5:30 pm to 7:30 pm Narrabri Golf Club

		1	1
1.	Welcome, apologies and introductions	5:30 – 5:35	All
2.	Previous meeting minutes	5:35 – 5:55	David Ross
3.	Navigating the Santos website	5:50 – 6.30	Leesa Selke/Annie Moody
4.	Leewood Phase 2 Review of Environmental Factors	6.30 – 7.10	Simon Griffiths
5.	 General Business Other business Dates for upcoming meetings Next meeting and issue to discuss 	7:10 – 7:30	All